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Readings for This Lecture

• Wikipedia
– HTTP Cookie
– Same Origin Policy
– Cross Site Scripting
– Cross Site Request Forgery



Background

• Many sensitive tasks are done through web
– Online banking, online shopping
– Database access
– System administration

• Web applications and web users are targets of 
many attacks
– Cross site scripting
– SQL injection
– Cross site request forgery
– Information leakage
– Session hijacking
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Web Browser and Network

Browser

Network

• Browser sends requests
• Web site sends response pages, which may include code
• Interaction susceptible to network attacks

OS
Hardware

Web 
site

request

reply
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Web Security Issues

• Secure communications between client & server
– HTTPS (HTTP over SSL) 

• User authentication & session management
– Cookies & other methods

• Active contents from different websites
– Protecting resources maintained by browsers

• Web application security
• Web site authentication (e.g., anti-phishing)
• Privacy concerns
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HTTP: HyperText Transfer Protocol

• Browser sends HTTP requests to the server
– Methods: GET, POST, HEAD, …
– GET: to retrieve a resource (html, image, script, css,…)
– POST: to submit a form (login, register, …)
– HEAD

• Server replies with a HTTP response
• Stateless request/response protocol

– Each request is independent of previous requests
– Statelessness has a significant impact on design and 

implementation of applications 
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Use Cookies to Store State Info

• Cookies
– A cookie is a name/value pair created by a website to 

store information on your computer

Browser
Server

Enters form data

Response + cookies

Browser
Server

Request + cookies

Returns data

Http is stateless protocol; cookies add state
7



Cookies Fields

• An example cookie
– Name session-token
– Content "s7yZiOvFm4YymG….”
– Domain .amazon.com
– Path /
– Send For Any type of connection
– Expires Monday, September 08, 2031 7:19:41 PM
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Cookies 
• Stored by the browser
• Used by the web applications

– used for authenticating, tracking, and maintaining 
specific information about users

• e.g., site preferences, contents of shopping carts
– data may be sensitive
– may be used to gather information about specific 

users

• Cookie ownership
– Once a cookie is saved on your computer, only the 

website that created the cookie can read it
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Web Authentication via Cookies

• HTTP is stateless
– How does the server recognize a user who has signed in? 

• Servers can use cookies to store state on client
– After client successfully authenticates, server computes 

an authenticator and gives it to browser in a cookie
• Client cannot forge authenticator on his own (session id)

– With each request, browser presents the cookie
– Server verifies the authenticator
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A Typical Session with Cookies
client server

POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html
Cookie:authenticator

Restricted content

Verify that this
client is authorized

Check validity of
authenticator

Authenticators must be unforgeable and tamper-proof
(malicious clients shouldn’t be able to modify an existing authenticator)

How to design it?
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Cross Site Scripting
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Client Side Scripting

• Web pages (HTML) can embed dynamic contents 
(code) that can executed on the browser

• JavaScript
– embedded in web pages and executed inside browser

• VBScript
– similar to JavaScript, only for Windows

• Java applets
– small pieces of Java bytecodes that execute in 

browsers
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HTML and Scripting

<html>
…

<P> 
<script>

var num1, num2, sum
num1 = prompt("Enter first number")
num2 = prompt("Enter second number")
sum = parseInt(num1) + parseInt(num2)
alert("Sum = " + sum)

</script>
…

</html>

Browser receives content, displays 
HTML and executes scripts
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Scripts are Powerful

• Client-side scripting is powerful and flexible, and 
can access the following resources
– Local files on the client-side host

• read / write local files
– Webpage resources maintained by the browser

• Cookies
• Domain Object Model (DOM) objects

– steal private information
– control what users see
– impersonate the user
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Browser as an Operating System

• Web users visit multiple websites simultaneously
• A browser serves web pages (which may contain 

programs) from different web domains
– i.e., a browser runs programs provided by mutually untrusted 

entities
– Running code one does not know/trust is dangerous
– A browser also maintains resources created/updated by web 

domains

• Browser must confine (sandbox) these scripts so that 
they cannot access arbitrary local resources

• Browser must have a security policy to manage/protect 
browser-maintained resources and to provide separation 
among mutually untrusted scripts
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Same Origin Policy

• The basic security model enforced in the browser
• SoP isolates the scripts and resources downloaded 

from different origins
– E.g., evil.org scripts cannot access bank.com resources

• Use origin as the security principal
• Origin = domain name + protocol + port

– all three must be equal for origin to be considered the 
same
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Security Principals

• A security principal is an entity that can be 
authenticated by a computer system or network. 
– Security principals, in addition to being able to be 

authenticated, are typically capable of being assigned 
rights and privileges over resources in the network. 

• Unit to which information security policies can 
apply.

• Not to be confused with security principles.
• Choosing the right security principal is important.
• What are security principals in Unix?
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Same Original Policy: What it Controls

• Same-origin policy applies to the following accesses:
– manipulating browser windows 
– URLs requested via the XmlHttpRequest

• XmlHttpRequest is an API that can be used by web browser 
scripting languages to transfer XML and other text data to and 
from a web server using HTTP, by establishing an 
independent and asynchronous communication channel. 

– used by AJAX 
– manipulating frames (including inline frames) 
– manipulating documents (included using the object tag) 
– manipulating cookies
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Problems with S-O Policy

• Poorly enforced on some browsers
– Particularly older browsers

• Limitations if site hosts unrelated pages
– Example: Web server often hosts sites for unrelated parties

• http://www.example.com/account/ 
• http://www.example.com/otheraccount/ 

– Same-origin policy allows script on one page to access properties 
of document from another

• Can be bypassed in Cross-Site-Scripting attacks

• Usability: Sometimes prevents desirable cross-origin 
resource sharing
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Cross Site Scripting (XSS)

• Recall the basics
– scripts embedded in web pages run in browsers
– scripts can access cookies 

• get private information
– and manipulate DOM objects

• controls what users see
– scripts controlled by the same-origin policy

• Why would XSS occur
– Web applications often take user inputs and use them 

as part of webpage (these inputs can have scripts)
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How XSS Works on Online Blog 

• Everyone can post comments, which will be displayed to 
everyone who view the post

• Attacker posts a malicious comment that includes scripts 
(which reads local authentication credentials and send of 
to the attacker)

• Anyone who view the post can have local authentication 
cookies stolen

• Web apps  will check that posts do not include scripts, 
but the check sometimes fail.

• Bug in the web application.  Attack happens in browser.
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Effect of the Attack

• Attacker can execute arbitrary scripts in browser

• Can manipulate any DOM component on 
victim.com
– Control links on page
– Control form fields (e.g. password field) on this page 

and linked pages.

• Can infect other users:   MySpace.com  worm.
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MySpace.com   (Samy worm)

• Users can post HTML on their pages
– MySpace.com ensures HTML contains no

<script>, <body>, onclick, <a href=javascript://>

– However, attacker  find out that a way to include 
Javascript within CSS tags:

<div style=“background:url(‘javascript:alert(1)’)”>

And can hide “javascript” as “java\nscript”

• With careful javascript hacking:
– Samy’s worm: infects anyone who visits an infected 

MySpace page   …    and adds Samy as a friend.
– Samy had millions of friends within 24 hours.

• More info:      http://namb.la/popular/tech.html
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Avoiding XSS bugs  (PHP)

• Main problem:   
– Input checking is difficult  --- many ways to inject 

scripts into HTML.

• Preprocess input from user before echoing it
• PHP:  htmlspecialchars(string)

&   &amp;      "   &quot;      '   &#039;       
<   &lt;        >  &gt; 

– htmlspecialchars(
"<a href='test'>Test</a>",   ENT_QUOTES); 

Outputs:  
&lt;a href=&#039;test&#039;&gt;Test&lt;/a&gt; 
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Avoiding XSS bugs   (ASP.NET)

• ASP.NET 1.1:

– Server.HtmlEncode(string)
• Similar to PHP htmlspecialchars

– validateRequest:    (on by default)
• Crashes page if finds  <script>  in POST data.

• Looks for hardcoded list of patterns.

• Can be disabled:

<%@  Page  validateRequest=“false" %>
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Cross site request 
forgery



Cross site request forgery (abbrev. 
CSRF or XSRF)

• Also known as one click attack or session 
riding

• Transmits unauthorized commands from a user 
who has logged in to a website to the website. 
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CSRF Explained
• Example:   

– User logs in to  bank.com.    Forgets to sign off.
– Session cookie remains in browser state

– Then user visits another site containing:
<form  name=F  action=http://bank.com/BillPay.php>
<input  name=recipient  value=badguy> …
<script> document.F.submit(); </script> 

– Browser sends user auth cookie with request
• Transaction will be fulfilled

• Problem:   

– browser is a confused deputy
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GMail Incidence: Jan 2007

• Google docs has a script that run a callback function, 
passing it your contact list as an object. The script 
presumably checks a cookie to ensure you are logged 
into a Google account before handing over the list.

• Unfortunately, it doesn’t check what page is making the 
request. So, if you are logged in on window 1, window 2 
(an evil site) can make the function call and get the 
contact list as an object. Since you are logged in 
somewhere, your cookie is valid and the request goes 
through.
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Real World CSRF Vulnerabilities

• Gmail
• NY Times
• ING Direct (4th largest saving bank in US)
• YouTube
• Various DSL Routers
• Purdue WebMail
• PEFCU
• Purdue CS Portal
• …
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Prevention

• Server side:
– use cookie + hidden fields to authenticate

• hidden fields values need to be unpredictable and user-
specific

– requires the body of the POST request to contain 
cookies 

• User side:
– logging off one site before using others
– selective sending of authentication tokens with 

requests
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Coming Attractions …

• More Web Security Issues
– SQL injection
– Side channel information leakage
– Driveby downloads
– Browser extension security
– Cookie privacy issues


