
1

Cookies

2

Readings for This Lecture

• Wikipedia
– HTTP Cookie
– Same Origin Policy
– Cross Site Scripting
– Cross Site Request Forgery

Background

• Many sensitive tasks are done through web
– Online banking, online shopping
– Database access
– System administration

• Web applications and web users are targets of
many attacks
– Cross site scripting
– SQL injection
– Cross site request forgery
– Information leakage
– Session hijacking

3

Web Browser and Network

Browser

Network

• Browser sends requests
• Web site sends response pages, which may include code
• Interaction susceptible to network attacks

OS
Hardware

Web
site

request

reply

4

Web Security Issues

• Secure communications between client & server
– HTTPS (HTTP over SSL)

• User authentication & session management
– Cookies & other methods

• Active contents from different websites
– Protecting resources maintained by browsers

• Web application security
• Web site authentication (e.g., anti-phishing)
• Privacy concerns

5

HTTP: HyperText Transfer Protocol

• Browser sends HTTP requests to the server
– Methods: GET, POST, HEAD, …
– GET: to retrieve a resource (html, image, script, css,…)
– POST: to submit a form (login, register, …)
– HEAD

• Server replies with a HTTP response
• Stateless request/response protocol

– Each request is independent of previous requests
– Statelessness has a significant impact on design and

implementation of applications

6

Use Cookies to Store State Info

• Cookies
– A cookie is a name/value pair created by a website to

store information on your computer

Browser
Server

Enters form data

Response + cookies

Browser
Server

Request + cookies

Returns data

Http is stateless protocol; cookies add state
7

Cookies Fields

• An example cookie
– Name session-token
– Content "s7yZiOvFm4YymG….”
– Domain .amazon.com
– Path /
– Send For Any type of connection
– Expires Monday, September 08, 2031 7:19:41 PM

8

Cookies
• Stored by the browser
• Used by the web applications

– used for authenticating, tracking, and maintaining
specific information about users

• e.g., site preferences, contents of shopping carts
– data may be sensitive
– may be used to gather information about specific

users

• Cookie ownership
– Once a cookie is saved on your computer, only the

website that created the cookie can read it

9

Web Authentication via Cookies

• HTTP is stateless
– How does the server recognize a user who has signed in?

• Servers can use cookies to store state on client
– After client successfully authenticates, server computes

an authenticator and gives it to browser in a cookie
• Client cannot forge authenticator on his own (session id)

– With each request, browser presents the cookie
– Server verifies the authenticator

10

A Typical Session with Cookies
client server

POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html
Cookie:authenticator

Restricted content

Verify that this
client is authorized

Check validity of
authenticator

Authenticators must be unforgeable and tamper-proof
(malicious clients shouldn’t be able to modify an existing authenticator)

How to design it?

11

Cross Site Scripting

12

Client Side Scripting

• Web pages (HTML) can embed dynamic contents
(code) that can executed on the browser

• JavaScript
– embedded in web pages and executed inside browser

• VBScript
– similar to JavaScript, only for Windows

• Java applets
– small pieces of Java bytecodes that execute in

browsers

13

HTML and Scripting

<html>
…

<P>
<script>

var num1, num2, sum
num1 = prompt("Enter first number")
num2 = prompt("Enter second number")
sum = parseInt(num1) + parseInt(num2)
alert("Sum = " + sum)

</script>
…

</html>

Browser receives content, displays
HTML and executes scripts

14

Scripts are Powerful

• Client-side scripting is powerful and flexible, and
can access the following resources
– Local files on the client-side host

• read / write local files
– Webpage resources maintained by the browser

• Cookies
• Domain Object Model (DOM) objects

– steal private information
– control what users see
– impersonate the user

15

Browser as an Operating System

• Web users visit multiple websites simultaneously
• A browser serves web pages (which may contain

programs) from different web domains
– i.e., a browser runs programs provided by mutually untrusted

entities
– Running code one does not know/trust is dangerous
– A browser also maintains resources created/updated by web

domains

• Browser must confine (sandbox) these scripts so that
they cannot access arbitrary local resources

• Browser must have a security policy to manage/protect
browser-maintained resources and to provide separation
among mutually untrusted scripts

16

Same Origin Policy

• The basic security model enforced in the browser
• SoP isolates the scripts and resources downloaded

from different origins
– E.g., evil.org scripts cannot access bank.com resources

• Use origin as the security principal
• Origin = domain name + protocol + port

– all three must be equal for origin to be considered the
same

17

Security Principals

• A security principal is an entity that can be
authenticated by a computer system or network.
– Security principals, in addition to being able to be

authenticated, are typically capable of being assigned
rights and privileges over resources in the network.

• Unit to which information security policies can
apply.

• Not to be confused with security principles.
• Choosing the right security principal is important.
• What are security principals in Unix?

18

Same Original Policy: What it Controls

• Same-origin policy applies to the following accesses:
– manipulating browser windows
– URLs requested via the XmlHttpRequest

• XmlHttpRequest is an API that can be used by web browser
scripting languages to transfer XML and other text data to and
from a web server using HTTP, by establishing an
independent and asynchronous communication channel.

– used by AJAX
– manipulating frames (including inline frames)
– manipulating documents (included using the object tag)
– manipulating cookies

19

Problems with S-O Policy

• Poorly enforced on some browsers
– Particularly older browsers

• Limitations if site hosts unrelated pages
– Example: Web server often hosts sites for unrelated parties

• http://www.example.com/account/
• http://www.example.com/otheraccount/

– Same-origin policy allows script on one page to access properties
of document from another

• Can be bypassed in Cross-Site-Scripting attacks

• Usability: Sometimes prevents desirable cross-origin
resource sharing

20

Cross Site Scripting (XSS)

• Recall the basics
– scripts embedded in web pages run in browsers
– scripts can access cookies

• get private information
– and manipulate DOM objects

• controls what users see
– scripts controlled by the same-origin policy

• Why would XSS occur
– Web applications often take user inputs and use them

as part of webpage (these inputs can have scripts)

21

How XSS Works on Online Blog

• Everyone can post comments, which will be displayed to
everyone who view the post

• Attacker posts a malicious comment that includes scripts
(which reads local authentication credentials and send of
to the attacker)

• Anyone who view the post can have local authentication
cookies stolen

• Web apps will check that posts do not include scripts,
but the check sometimes fail.

• Bug in the web application. Attack happens in browser.

22

Effect of the Attack

• Attacker can execute arbitrary scripts in browser

• Can manipulate any DOM component on
victim.com
– Control links on page
– Control form fields (e.g. password field) on this page

and linked pages.

• Can infect other users: MySpace.com worm.

23

MySpace.com (Samy worm)

• Users can post HTML on their pages
– MySpace.com ensures HTML contains no

<script>, <body>, onclick,

– However, attacker find out that a way to include
Javascript within CSS tags:

<div style=“background:url(‘javascript:alert(1)’)”>

And can hide “javascript” as “java\nscript”

• With careful javascript hacking:
– Samy’s worm: infects anyone who visits an infected

MySpace page … and adds Samy as a friend.
– Samy had millions of friends within 24 hours.

• More info: http://namb.la/popular/tech.html
24

Avoiding XSS bugs (PHP)

• Main problem:
– Input checking is difficult --- many ways to inject

scripts into HTML.

• Preprocess input from user before echoing it
• PHP: htmlspecialchars(string)

&  & "  " '  '
<  < >  >

– htmlspecialchars(
"Test", ENT_QUOTES);

Outputs:
Test

25

Avoiding XSS bugs (ASP.NET)

• ASP.NET 1.1:

– Server.HtmlEncode(string)
• Similar to PHP htmlspecialchars

– validateRequest: (on by default)
• Crashes page if finds <script> in POST data.

• Looks for hardcoded list of patterns.

• Can be disabled:

<%@ Page validateRequest=“false" %>

26

27

Cross site request
forgery

Cross site request forgery (abbrev.
CSRF or XSRF)

• Also known as one click attack or session
riding

• Transmits unauthorized commands from a user
who has logged in to a website to the website.

28

CSRF Explained
• Example:

– User logs in to bank.com. Forgets to sign off.
– Session cookie remains in browser state

– Then user visits another site containing:
<form name=F action=http://bank.com/BillPay.php>
<input name=recipient value=badguy> …
<script> document.F.submit(); </script>

– Browser sends user auth cookie with request
• Transaction will be fulfilled

• Problem:

– browser is a confused deputy

29

GMail Incidence: Jan 2007

• Google docs has a script that run a callback function,
passing it your contact list as an object. The script
presumably checks a cookie to ensure you are logged
into a Google account before handing over the list.

• Unfortunately, it doesn’t check what page is making the
request. So, if you are logged in on window 1, window 2
(an evil site) can make the function call and get the
contact list as an object. Since you are logged in
somewhere, your cookie is valid and the request goes
through.

30

Real World CSRF Vulnerabilities

• Gmail
• NY Times
• ING Direct (4th largest saving bank in US)
• YouTube
• Various DSL Routers
• Purdue WebMail
• PEFCU
• Purdue CS Portal
• …

31

Prevention

• Server side:
– use cookie + hidden fields to authenticate

• hidden fields values need to be unpredictable and user-
specific

– requires the body of the POST request to contain
cookies

• User side:
– logging off one site before using others
– selective sending of authentication tokens with

requests

32

33

Coming Attractions …

• More Web Security Issues
– SQL injection
– Side channel information leakage
– Driveby downloads
– Browser extension security
– Cookie privacy issues

